Concept Selection Process

GIF Policy & Experts Meeting: London February 18-19, 2002

Purpose of this Talk

- Adopt major conclusions of the fuel cycle studies
- Explain the process, schedule and responsibilities
- Briefly review the evaluations available today

The Discussion Session Tuesday Morning:

Discuss and agree on process items identified

Progress Toward Selection

- Initial Request for Concepts: over 100
- Screening for Potential: ~30 concept sets were organized and considered
- Final Screening (to date): 20 concept sets have been refined, and are being evaluated in considerable detail

"How will we choose from the 20 evaluated concepts, to select the 6-8 recommended concepts for Gen IV ?"

What Systems are Needed?

1: Electricity Generation, near and long-term

What Systems are Needed?

- 2: Waste Burning of spent fuel
- 3: Fissile Creation from conversion of fertile material

What Systems are Needed?

4: Hydrogen, or other products near and long-term

What Systems could be Available?

Missions are a Primary Consideration

"Missions for Generation IV are the Broad Elements of a Sustainable Future for Nuclear Energy"

Preliminary list of Missions:

- Electricity
- Hydrogen (and perhaps other products)
- Waste burndown
- Fissile creation

Not considered missions are:

- · Market Niches, or
- Regional Needs

A Few Examples of Mission Relevance

	Water	Gas	Liquid Metal	Non- Classical
• Electricity	CANDU NG	PBR/PMR		
• Hydrogen		VHTR		AHTR
Waste burndown	SCWR Fast	GFR	Na LMR; Pb/Bi	MSR
• Fissile creation			Na LMR	

Overall Concept Selection Process

Process for the Final Selection

Highlights of the Selection Process

- The fuel cycle studies motivates several key missions that can considerably aid the selection process
- The missions for Generation IV are high-level guidance from the GIF members that will be discussed tomorrow.
- Draft selections are proposed to be discussed with the GIF Experts Group in Washington DC on April 12, and possibly at a later meeting in May/June after evaluations are done.
- The concept of Near-Term Systems arises naturally, and will also be discussed tomorrow.

Review of the Evaluations to Date

- 1. Review the three Goal Areas
- 2. Review a few individual Goal Evaluations
- 3. Understand the limitation of an overall rollup

"We are focused on the process, and not on the selections, at this point."

Concept Identifiers

- Water-cooled systems
 - W1 Integral primary system reactors
 - W2 Simplified BWR
 - W3 CANDU NG
 - W4 SCWR, thermal
 - W5 SCWR, fast
 - W6 High conversion BWR
- Gas-cooled systems
 - G1 PBR open cycle
 - G2 PMR open cycle
 - G3 VHTR open cycle
 - G4 Generic gas closed cycle
 - G5 Gas fast reactor

- Liquid-metal cooled systems
 - L1 Na cooled, oxide fuel
 - L2 Na cooled, metal fuel
 - L3 Na cooled, metal fuel, Japan
 - L4 Medium Pb/Pb-Bi cooled, US
 - L5 Medium Pb/Pb-Bi cooled, Russia
 - L6 Small Pb/Pb-Bi cooled
- Non-classical systems
 - N1 Molten salt core
 - N2 Gas core
 - N3 Molten salt cooled

Key Assumptions and Highlights

- This summary based on Jan 25th TWG evaluations
- Evaluations based on v2 of the FSR
- 20 concepts are evaluated
- TWGs and CGs are still actively working on the evaluations (until the end of April)

"It is very important to remember that the evaluations are still preliminary."

Preliminary Sustainability Evaluation

Preliminary Safety & Reliability Evaluation

Preliminary Economics Evaluation

Conclusions on Goal Area Evaluations

- Overall, the evaluations in sustainability seem generally consistent: fast reactors dominate the upper half of the field.
- Evaluations in safety and reliability and economics seem generally consistent, although a number of evaluations are undergoing further examination.
- Evaluations within each technical working group appear to produce consistent ordering of their concepts.

SU-2 EvaluationWaste Minimization and Management

SR-2 Evaluation Safety Features and Physical Model Characterization

EC-1 Evaluation Construction and Production Costs

Definition: Composite Score

The sum of the eight goal evaluations, reported at the 75th percentile of the distribution. A perfect score is 8.

Sum of the distributions:

Preliminary Composite Evaluations

Issue: Can further refinement of the evaluations be reasonably expected to differentiate the concepts, given the uncertainties?

Concept Potential and Development Cost

Conclusions on the Evaluations to Date

- Evaluations to date have been presented with the aim of understanding their general trends.
- Through the efforts of the TWGs, the evaluations are progressively being refined and made consistent.
- The evaluations of goals and/or goal areas are very useful for informing the process of selection.
- Development cost, and R&D Challenge will be useful for informing the process as well.

